Effects of cytosine hydroxymethylation on DNA strand separation.

نویسندگان

  • Philip M D Severin
  • Xueqing Zou
  • Klaus Schulten
  • Hermann E Gaub
چکیده

Cytosine hydroxymethylation is an epigenetic control factor in higher organisms. New discoveries of the biological roles of hydroxymethylation serve to raise questions about how this epigenetic modification exerts its functions and how organisms discriminate cytosine hydroxymethylation from methylation. Here, we report investigations that reveal an effect of cytosine hydroxymethylation on mechanical properties of DNA under load. The findings are based on molecular force assay measurements and steered molecular dynamics simulations. Molecular force assay experiments identified significant effects of hydroxymethylation on stretching-induced strand separation; the underlying physical mechanism has been revealed by steered molecular dynamics simulations. We find that hydroxymethylation can either upregulate or downregulate DNA's strand separation propensity, suggesting that hydroxymethylation can control gene expression by facilitating or obstructing the action of transcription machinery or the access to chromosomal DNA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron Supplementation Reverses the Reduction of Hydroxymethylcytosine in Hepatic DNA Associated With Chronic Alcohol Consumption in Rats

BACKGROUND Alcohol is known to affect two epigenetic phenomena, DNA methylation and DNA hydroxymethylation, and iron is a cofactor of ten-eleven translocation (TET) enzymes that catalyze the conversion from methylcytosine to hydroxymethylcytosine. In the present study we aimed to determine the effects of alcohol on DNA hydroxymethylation and further effects of iron on alcohol associated epigene...

متن کامل

Cytosine methylation alters DNA mechanical properties

DNA methylation plays an essential role in transcriptional control of organismal development in epigenetics, from turning off a specific gene to inactivation of entire chromosomes. While the biological function of DNA methylation is becoming increasingly clear, the mechanism of methylation-induced gene regulation is still poorly understood. Through single-molecule force experiments and simulati...

متن کامل

Global Methylation and Hydroxymethylation in DNA from Blood and Saliva in Healthy Volunteers

Aims. We describe a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify and compare simultaneously global methylation and hydroxymethylation in human DNA of different tissues. Materials and Methods. Blood and saliva DNA from fourteen volunteers was processed for epigenetic endpoints using LC-MS/MS and PCR-pyrosequencing technology. Results. Global DNA methylation was si...

متن کامل

Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation

Cytosine residues in mammalian DNA occur in at least three forms, cytosine (C), 5-methylcytosine (M; 5mC) and 5-hydroxymethylcytosine (H; 5hmC). During semi-conservative DNA replication, hemi-methylated (M/C) and hemi-hydroxymethylated (H/C) CpG dinucleotides are transiently generated, where only the parental strand is modified and the daughter strand contains native cytosine. Here, we explore ...

متن کامل

Understanding the structural and dynamic consequences of DNA epigenetic modifications: computational insights into cytosine methylation and hydroxymethylation.

We report a series of molecular dynamics (MD) simulations of up to a microsecond combined simulation time designed to probe epigenetically modified DNA sequences. More specifically, by monitoring the effects of methylation and hydroxymethylation of cytosine in different DNA sequences, we show, for the first time, that DNA epigenetic modifications change the molecule's dynamical landscape, incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 104 1  شماره 

صفحات  -

تاریخ انتشار 2013